

Outdoor PowerRACK™

Up to 1600A User Manual

CONTENTS

- 3 INTRODUCTION
- 3 SHIPMENT: UNPACKING AND INSPECTION
- 4 TRANSPORTATION GUIDELINES
 - Stacking PowerRACKs for Transport
 - Storage and Handling During Transit
 - Unloading Instructions
- 5 OUTDOOR POWERRACK COMPONENTS
- 6 OUTDOOR POWERACK DIMENSIONS
- 7 SETTING UP THE OUTDOOR POWERRACK UNIT (PDU)
 - Step 1: Placement and Inspection of the OUTDOOR PowerRACK PDU
 - Step 2: Prepare For Connection
 - Step 3: Making and Breaking Connection on Outdoor PowerRACK
 - Step 4: Powering Up Outdoor PowerRACK
- 9 ADJUSTABLE CIRCUIT BREAKERS
 - 9 - 10 Function Breakdown of LS/I Breakers
 - 11 Adjusting Circuit Breakers 640A-1600A
 - 12 Adjusting Circuit Breakers 480A-1200A
 - 13 Adjusting Circuit Breakers 240A-600A
 - 14 Adjusting Circuit Breakers 160A-400A
 - 15 Adjusting Circuit Breakers 100A-250A
 - 16 Adjusting Circuit Breakers 60A-150A
- 17 TROUBLESHOOTING GUIDE
 - 17 Circuit Breaker Tripping During Normal Operation
 - 17 Circuit Breaker Tripping When Powering Up
 - 18 Circuit Breaker Tripping When Powering Up (continued)
 - 18 How to Check an Outdoor Rack for a Short Circuits
 - 19 No Power at Receptacles
- 19 TECHNICAL SUPPORT
- 20 NOTES

Important

This manual contains information critical to the proper operation of the Lex Products Outdoor PowerRACK™. Be certain to read and understand all instructions prior to installation and operation.

Note: This manual is furnished exclusively to support installation and operation of the Lex Products Outdoor PowerRACK. All concepts and ideas are the sole property of Lex Products and are not to be duplicated or utilized in any manner without written permission.

TECHNICAL SUPPORT

Lex Products is available to help answer any installation or operation inquiries.

For any questions or technical advice, please call Technical Services 24 hours per day, 7 days per week at 800.643.4460 or email INFO@lexproducts.com.

INTRODUCTION

This manual details the installation and use of the Lex Products Outdoor PowerRACK Distribution. This power distribution rack provides a convenient way to adjust the overcurrent protection of the output receptacles. Please review this manual prior to operating the Outdoor PowerRACK. Store this manual in a safe location for future reference.

SHIPMENT: UNPACKING AND INSPECTION

Check the shipment carefully to confirm it arrived complete and undamaged

1. Unpack the shipment and check the contents against the packing list to ensure the order is complete
2. Check the unit for loose or broken components, which might have resulted from shipping
 - a. Inspect for signs of damage to wiring devices, device covers or circuit breakers
 - b. Open and close the hinged breaker windows to ensure that they open and close properly
 - c. If there is any damage to the Outdoor PowerRACK, contact Lex Products Technical Services toll free at 800.643.4460 or email info@lexproducts.com

TRANSPORTATION GUIDELINES

Inspect units before transport to ensure all doors and covers are secured and latched

Remove or stow all cables and accessories prior to transport

Secure the unit to the truck or trailer bed using ratchet straps or load binders. Hole pattern on skids for additional securing methods

Attach straps to frame, handles or fork pockets (not to panel doors, breaker handles, or connectors)

Tighten straps evenly to prevent shifting or twisting during transport

Stacking PowerRACKs for Transport

Do not exceed two units high unless otherwise specified by Lex Products

Ensure rack skids are seated in the skid plates located on the top of the bottom rack

Place the heavier unit on the bottom to maintain stability

Use straps to secure both upper and lower units

Ensure the stack is secured to the transport platform / walls to prevent movement or tipping

Stacking on even surfaces only

Storage and Handling During Transit

Maintain upright position at all times; do not lay on back or sides

Unloading Instructions

Unload with a forklift rated for the combined weight of stacked units

Detach upper PowerRACK first when stacked

Move slowly and maintain control — avoid sudden stops or turns

After unloading, visually inspect units for any signs of damage or loose components

Outdoor PowerRACK™ Distribution Components (Typical)

Stackable

- In storage, use and track transport
- Do not lift while stacked
- Skid plates on top of rack for proper stacking

Receptacles

- Wiring device type varies by configuration
- Circuit breakers provide overcurrent protection
- Used to draw power from enclosure

FeedThru (optional)

- Wiring device type matches inlet
- No Overcurrent Protection
- Used to pass thru power to additional distribution units

Power Inlet

- Wiring device type varies by configuration
- Introduces power into the enclosure

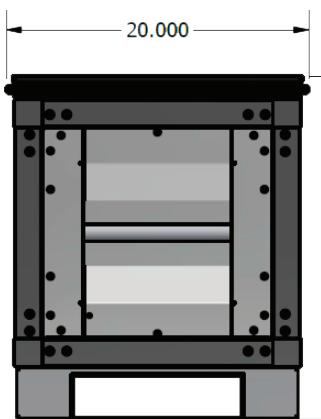
Enclosure

- Heavy-duty aluminium panels with integrated side handles designed for hand or strap lift
- Recessed hardware and aluminum frame
- Front and Back panels are recessed for added protection during transport and storage

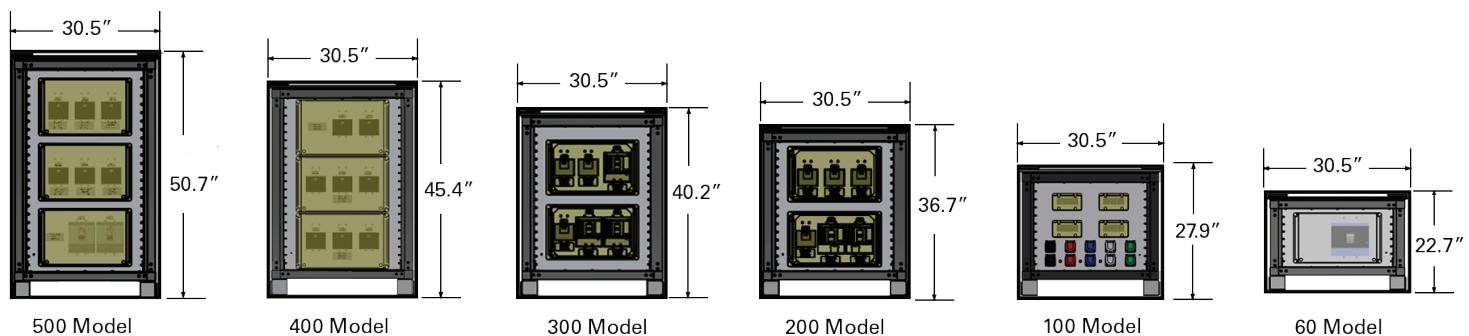
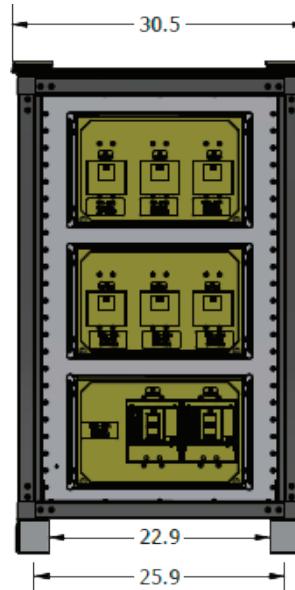
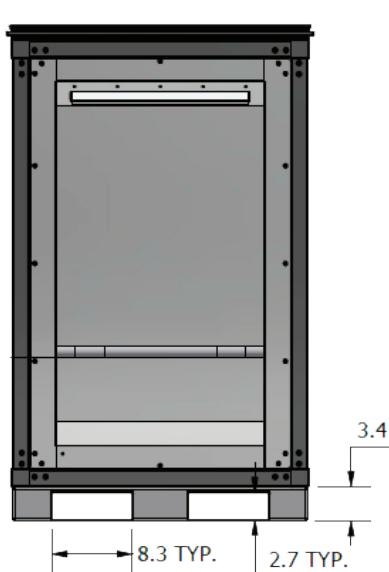
Breakers

- All circuit breakers are located under self-closing hinged windows
- Tighten twist knobs to secure closed

Mains Circuit Breaker (optional)


- Protects the rack from exceeding rated amperage

Outdoor Rack Base




- Skid base elevates receptacles above the ground while permitting secure lifting via forklift

OUTDOOR POWER RACK DIMENSIONS

Slim Depth

Standard Depth

Rack Name	Height (in.)	Width (in.)	Depth (in.)	≤ 800A	1200A / 1600A
500	50.7	30.5	31.5	x	x
400	45.4	30.5	31.5	x	x
300	40.2	30.5	31.5	x	x
200	36.7	30.5	31.5	x	x
100	27.9	30.5	31.5	x	
100 Slim	27.9	30.5	20	x	
60 Slim	22.7	30.5	20	x	

SETTING UP THE OUTDOOR POWER DISTRIBUTION UNIT (PDU)

Set up of the Lex Products Outdoor Power Distribution Rack is to be performed by qualified personnel only

Step 1: Placement and Inspection of the Outdoor PowerRACK PDU

1. The Lex Products Outdoor PowerRACK is UL Listed NEMA Type 3R for outdoor use
2. Place the Outdoor PowerRACK on a level location with a dry and firm foundation within proximity of the power source and the location requiring power
3. The base of the unit elevates live electrical components above ground level with skids. Ensure the surface is level and capable of supporting the weight of the PowerRACK
4. The PowerRACK can be stacked one-high in use, storage and vehicle transit
 - a. DO NOT LIFT WHILE STACKED
5. The rack can be moved by Forklift, Strap lift, Casters/Cart (specific units), and two-man portable (specific units)
 - a. When moving the Outdoor PowerRACK, use the lifting handles on the sides of the rack to lift by hand or with straps
 - b. Skids and a fork pocket are located on the bottom of the rack for lifting

Step 2: Prepare For Connection

WARNING: Before making connections to the Outdoor PowerRACK PDU, make sure the power source feeding the box is OFF

WARNING: No connections are to be made while the equipment is energized, including the power source and cables from which it is provided

WARNING: DO NOT exceed the voltage rating of the device as identified on the label attached to the enclosure

WARNING: Both sets of Cam extensions feeding the input must come from the same power source

1. Ensure Main Circuit Breaker for the rack is in the 'O/OFF' position
2. Ensure all Receptacle Circuit Breakers on the rack are in the 'O/OFF' position

NOTE: If using the feed thru feature, connect the feed thru BEFORE the input connection is made

Step 3: Making and Breaking Connections on Outdoor PowerRACK

NOTE: Best practices dictate that load connections, (power output), are completed prior to power inlet connections. This ensures connections are not made while the circuits are energized or 'live', limiting the potential for shock or damage to personnel or loads

Single-pole Cam-Type Connections

When **MAKING** the connection, begin with the GREEN ground connection, then the WHITE neutral connection and finish with the remaining HOT connections

- a. Align the screw on the Cam facing up
- b. Firmly insert Cam device into panel mounted Cam
- c. Rotate clockwise until fully engaged and locked

When **BREAKING** the connection, begin with the HOT connections, then the WHITE neutral connection and finish with the GREEN ground connection.

NEMA Locking Connections

1. Fully insert the male plug into the female receptacle
2. Turn the plug clockwise until it is fully locked, ensuring it is properly seated in its receptacle

NEMA Straight Blade Connections

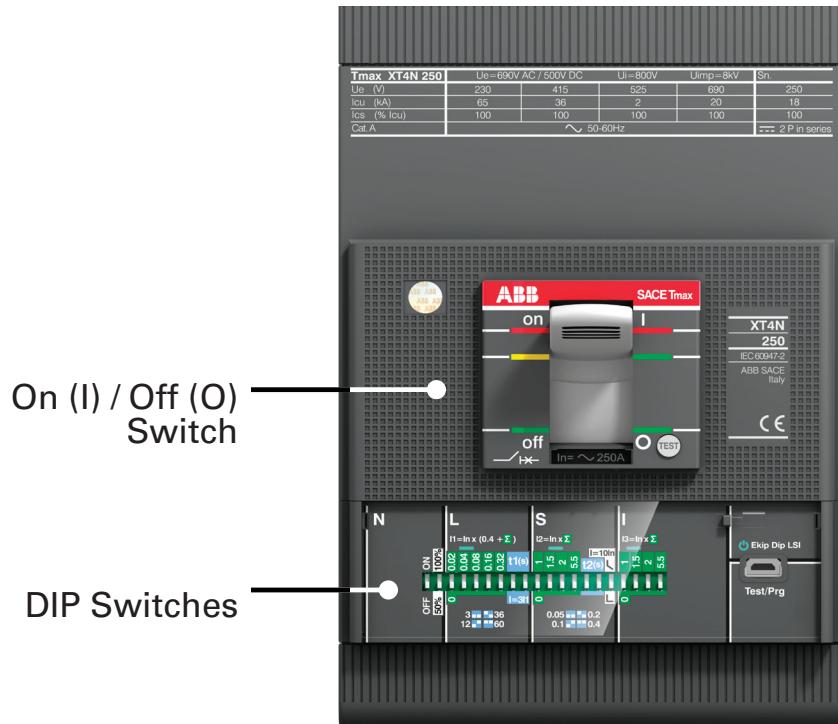
1. Fully insert the male plug into the female receptacle, ensuring it is properly seated

Pin & Sleeve Connections

1. Align the pins on the male plug to the female receptacle
2. Fully insert the plug into the receptacle
3. Turn the locking ring on the plug clockwise until it is fully locked

Step 4: Powering Up Outdoor PowerRACK

Best practices dictate that loads are applied gradually the first time the system is set up


1. Turn on the power source
2. Beginning with the PDU closest to the power source, move the first individual circuit breaker to the 'I/ON' position
3. Ensure the devices fed by that circuit are ON, tracing the electrical path to the final device fed by that circuit
4. Repeat steps 2 and 3 for the remaining circuit breakers

NOTE: If the circuit breaker cannot be energized or trips, check the system for continuity, short circuits and overload. Make the necessary corrections before proceeding

ADJUSTABLE CIRCUIT BREAKERS

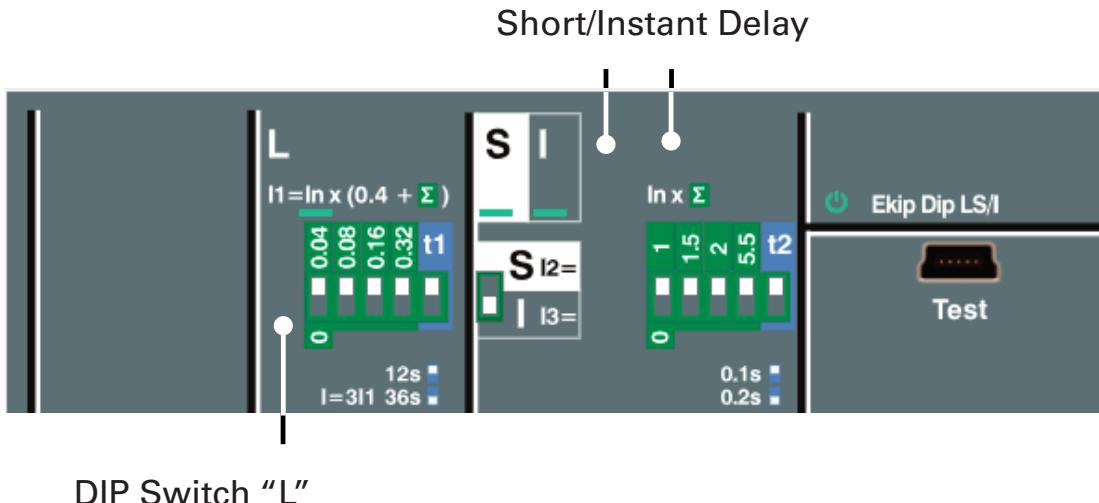
All Outdoor PowerRACKs that are in the Load Master® product family, have adjustable breakers for the Cam outputs. The current level of the circuit breakers is adjustable to match the load of the output receptacles. The circuit breakers are adjusted with dip switches located under a clear cover on each circuit breaker.

Figure 3.1: Circuit Breaker (breaker may vary in design)

Function Breakdown of LS/I Breakers

The Ekip Dip LS/I is an electronic trip unit used in ABB's XT series molded case circuit breakers (MCCBs). It provides adjustable protection functions using DIP switches. The LS/I version includes:

L (Long-time protection): Protects against overloads. Providing 16 amerge settings.


S (Short-time protection): Protects against short-circuits with adjustable delay for selectivity.

I (Instantaneous protection): Trips immediately on very high fault currents.

In Ekip Dip LS/I trip units, the Short-time (S) and Instantaneous (I) protections share a combined control logic, but they are not the same function. The LS/I indicates that the S and I protections are internally coordinated.

Function Breakdown of LS/I Breakers

Figure 3.2: DIP Switches

DIP Switch "L"

Long-time Protection (L)

Pickup (I_r): Adjustable from $0.4 \times I_n$ to $1.0 \times I_n$ (I_n = breaker rated current).

Delay (t_1): Adjustable delay (in seconds) to prevent nuisance tripping under short overloads.

Purpose: Prevents overheating of cables and conductors due to sustained overload.

Short-time Protection (S)

Pickup (I_{sd} or I_2): Adjustable typically $1.5 \times I_r$ to $10 \times I_r$.

Delay (t_2): Adjustable delay (0.1 s to 0.5 s, depending on model).

Purpose: Provides coordination with downstream breakers. Allows a fault closer to the load to be cleared locally before the upstream breaker trips.

Instantaneous Protection (I)

Pickup (I_i or I_3): Adjustable, usually $2 \times I_n$ up to $15 \times I_n$.

Delay: Fixed (no intentional delay).

Purpose: Trips immediately for very high-level short circuits.

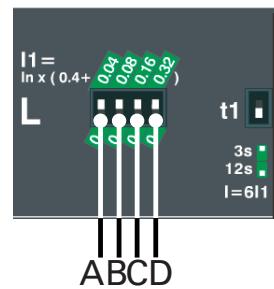
DIP Switch Settings

Settings are made with DIP switches on the front of the trip unit. Each function (L, S, I) has its own range of DIP combinations.

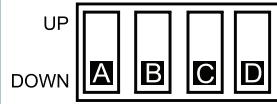
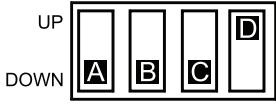
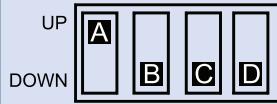
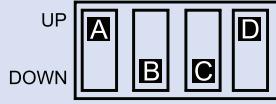
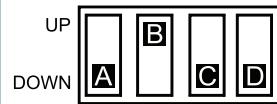
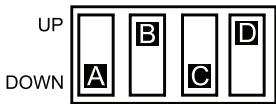
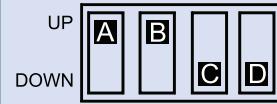
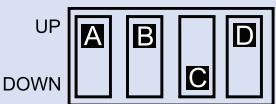
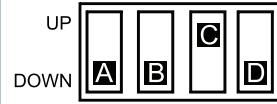
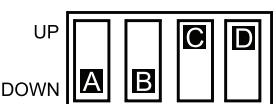
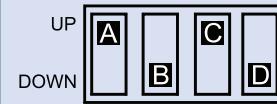
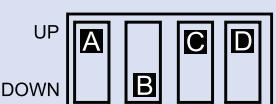
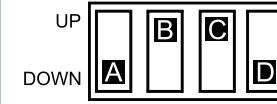
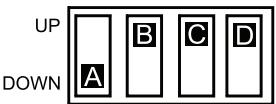
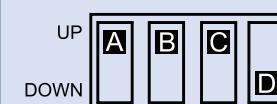
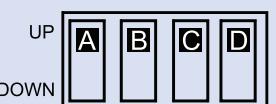
L Function: Set I_r (pickup) and t_1 (delay)

S Function: Set I_{sd} (pickup) and t_2 (delay)

I Function: Set I_i (pickup)

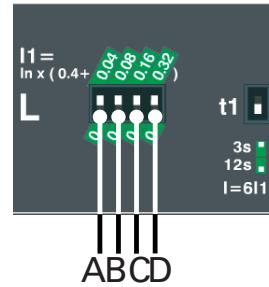

Important: For LS/I breakers, if the fault current is above I_2 (the short-time pickup) but below I_3 , the breaker will trip after the t_2 delay (short-time protection). If the fault current is above I_3 , the breaker will trip instantaneously (I function), regardless of t_2 . The short-time delay (t_2) only applies in the range between I_2 and I_3 .

The trip unit automatically decides based on the current magnitude.

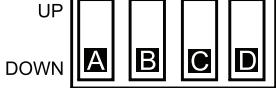
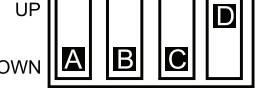
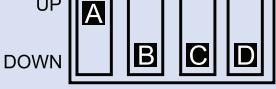
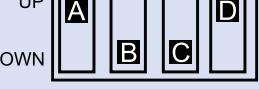
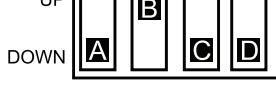
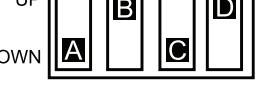
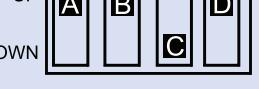
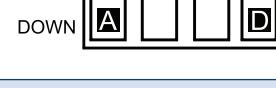
















Adjusting the Circuit Breakers

640-1600 Amp Circuit Breaker- DIP Switch Settings

1. Set the DIP switches on the circuit breaker to the closest level indicated in the table below with the set level greater than the actual load
 - a. Only adjust the DIP switch labeled "L"
 - b. To adjust the circuit breaker, open the clear cover over the DIP switch using a small flathead screw driver
 - c. Move each switch (A, B, C, D) into the up or down position based on the table below to achieve the desired output current rating
 - d. Close the clear cover over the DIP switch

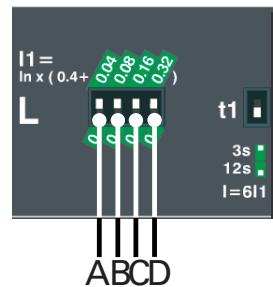

640-1600 Amp Circuit Breaker Adjustment Settings

Amps	Dipswitch Configuration	Amps	Dipswitch Configuration
640 Amps	UP DOWN	1,152 Amps	UP DOWN
704 Amps	UP DOWN	1,216 Amps	UP DOWN
768 Amps	UP DOWN	1,280 Amps	UP DOWN
832 Amps	UP DOWN	1,344 Amps	UP DOWN
896 Amps	UP DOWN	1,408 Amps	UP DOWN
960 Amps	UP DOWN	1,472 Amps	UP DOWN
1,024 Amps	UP DOWN	1,536 Amps	UP DOWN
1,088 Amps	UP DOWN	1600 Amps	UP DOWN









Adjusting the Circuit Breakers (continued)

480-1200 Amp Circuit Breaker- DIP Switch Settings

1. Set the DIP switches on the circuit breaker to the closest level indicated in the table below with the set level greater than the actual load
 - a. Only adjust the DIP switch labeled "L"
 - b. To adjust the circuit breaker, open the clear cover over the DIP switch using a small flathead screw driver
 - c. Move each switch (A, B, C, D) into the up or down position based on the table below to achieve the desired output current rating
 - d. Close the clear cover over the DIP switch

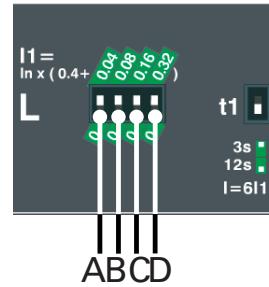

480-1200 Amp Circuit Breaker Adjustment Settings

Amps	Dipswitch Configuration	Amps	Dipswitch Configuration
480 Amps	UP DOWN	864 Amps	UP DOWN
528 Amps	UP DOWN	912 Amps	UP DOWN
576 Amps	UP DOWN	960 Amps	UP DOWN
624 Amps	UP DOWN	1,008 Amps	UP DOWN
672 Amps	UP DOWN	1,056 Amps	UP DOWN
720 Amps	UP DOWN	1,104 Amps	UP DOWN
768 Amps	UP DOWN	1,152 Amps	UP DOWN
816 Amps	UP DOWN	1,200 Amps	UP DOWN

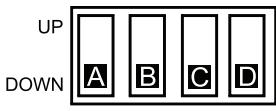
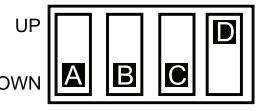
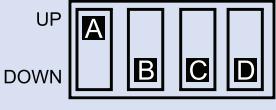
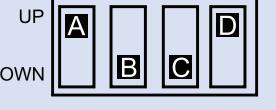
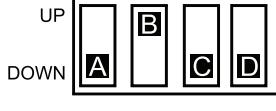
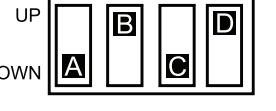
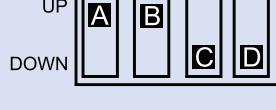
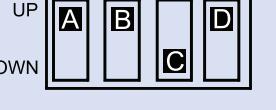
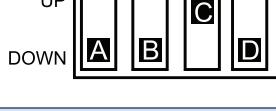
Adjusting the Circuit Breakers (continued)

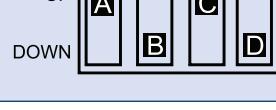
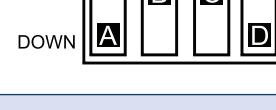
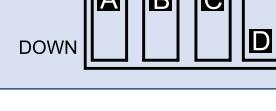
240-600 Amp Circuit Breaker- DIP Switch Settings

1. Set the DIP switches on the circuit breaker to the closest level indicated in the table below with the set level greater than the actual load
 - a. Only adjust the DIP switch labeled "L"
 - b. To adjust the circuit breaker, open the clear cover over the DIP switch using a small flathead screw driver
 - c. Move each switch (A, B, C, D) into the up or down position based on the table below to achieve the desired output current rating
 - d. Close the clear cover over the DIP switch



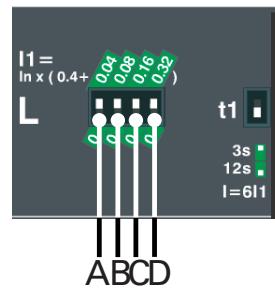
240-600 Amp Circuit Breaker Adjustment Settings			
Amps	Dipswitch Configuration	Amps	Dipswitch Configuration
240 Amps	UP DOWN A B C D	432 Amps	UP DOWN A B C D
264 Amps	UP DOWN A B C D	456 Amps	UP DOWN A B C D
288 Amps	UP DOWN A B C D	480 Amps	UP DOWN A B C D
312 Amps	UP DOWN A B C D	504 Amps	UP DOWN A B C D
336 Amps	UP DOWN A B C D	528 Amps	UP DOWN A B C D
360 Amps	UP DOWN A B C D	552 Amps	UP DOWN A B C D
384 Amps	UP DOWN A B C D	576 Amps	UP DOWN A B C D
408 Amps	UP DOWN A B C D	600 Amps	UP DOWN A B C D

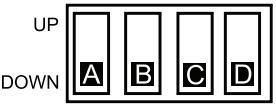
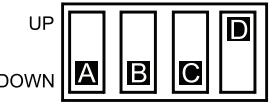
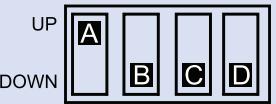
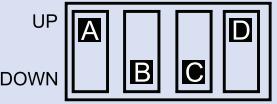
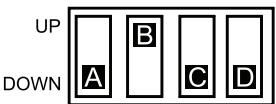
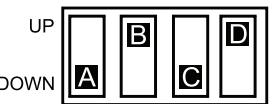
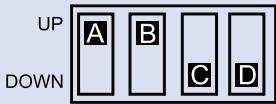
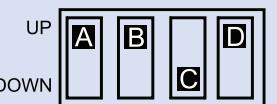
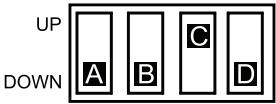
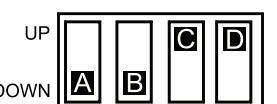
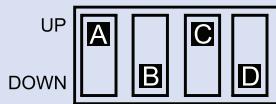
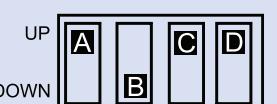
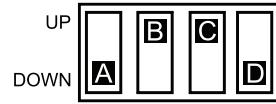
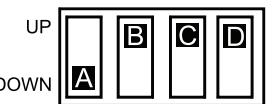
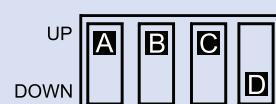
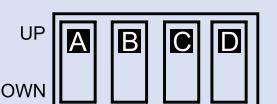



Adjusting the Circuit Breakers (continued)

160-400 Amp Circuit Breaker- DIP Switch Settings

1. Set the DIP switches on the circuit breaker to the closest level indicated in the table below with the set level greater than the actual load
 - a. Only adjust the DIP switch labeled "L"
 - b. To adjust the circuit breaker, open the clear cover over the DIP switch using a small flathead screw driver
 - c. Move each switch (A, B, C, D) into the up or down position based on the table below to achieve the desired output current rating
 - d. Close the clear cover over the DIP switch

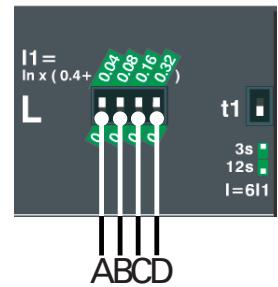

160-400 Amp Circuit Breaker Adjustment Settings

Amps	Dipswitch Configura-tion	Amps	Dipswitch Configura-tion
160 Amps	UP DOWN	288 Amps	UP DOWN
176 Amps	UP DOWN	304 Amps	UP DOWN
192 Amps	UP DOWN	320 Amps	UP DOWN
208 Amps	UP DOWN	336 Amps	UP DOWN
224 Amps	UP DOWN	352 Amps	UP DOWN
240 Amps	UP DOWN	368 Amps	UP DOWN
256 Amps	UP DOWN	384 Amps	UP DOWN
272 Amps	UP DOWN	400 Amps	UP DOWN

















Adjusting the Circuit Breakers (continued)

100-250 Amp Circuit Breaker- DIP Switch Settings

1. Set the DIP switches on the circuit breaker to the closest level indicated in the table below with the set level greater than the actual load
 - a. Only adjust the DIP switch labeled "L"
 - b. To adjust the circuit breaker, open the clear cover over the DIP switch using a small flathead screw driver
 - c. Move each switch (A, B, C, D) into the up or down position based on the table below to achieve the desired output current rating
 - d. Close the clear cover over the DIP switch


100-250 Amp Circuit Breaker Adjustment Settings

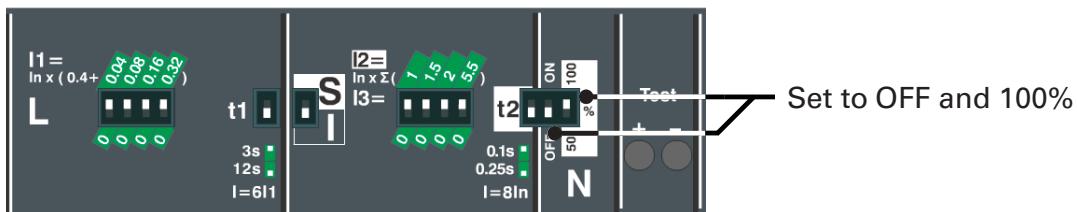
Amps	Dipswitch Configuration	Amps	Dipswitch Configuration
100 Amps	UP DOWN	180 Amps	UP DOWN
110 Amps	UP DOWN	190 Amps	UP DOWN
120 Amps	UP DOWN	200 Amps	UP DOWN
130 Amps	UP DOWN	210 Amps	UP DOWN
140 Amps	UP DOWN	220 Amps	UP DOWN
150 Amps	UP DOWN	230 Amps	UP DOWN
160 Amps	UP DOWN	240 Amps	UP DOWN
170 Amps	UP DOWN	250 Amps	UP DOWN

Adjusting the Circuit Breakers (continued)

60-150 Amp Circuit Breaker- DIP Switch Settings

1. Set the DIP switches on the circuit breaker to the closest level indicated in the table below with the set level greater than the actual load
 - a. Only adjust the DIP switch labeled "L"
 - b. To adjust the circuit breaker, open the clear cover over the DIP switch using a small flathead screw driver
 - c. Move each switch (A, B, C, D) into the up or down position based on the table below to achieve the desired output current rating
 - d. Close the clear cover over the DIP switch

60-150 Amp Circuit Breaker Adjustment Settings


Amps	Dipswitch Configuration	Amps	Dipswitch Configuration
60 Amps	UP DOWN A B C D	108 Amps	UP DOWN A B C D
66 Amps	UP DOWN A B C D	114 Amps	UP DOWN A B C D
72 Amps	UP DOWN A B C D	120 Amps	UP DOWN A B C D
78 Amps	UP DOWN A B C D	126 Amps	UP DOWN A B C D
84 Amps	UP DOWN A B C D	132 Amps	UP DOWN A B C D
90 Amps	UP DOWN A B C D	138 Amps	UP DOWN A B C D
86 Amps	UP DOWN A B C D	144 Amps	UP DOWN A B C D
102 Amps	UP DOWN A B C D	150 Amps	UP DOWN A B C D

TROUBLESHOOTING GUIDE

To help determine what has caused a circuit breaker to trip, it is important to configure the simplest possible power distribution system set-up under which the problem still occurs. The loads connected to the system might exceed the circuit breaker rating, in which case a larger power distribution unit would be needed. If a larger power distribution unit is needed, contact Lex Products with the load information and requirements of the specific application to determine the appropriate power distribution system.

Circuit Breaker Tripping During Normal Operation

1. Verify whether circuit breaker long delay settings are set as needed
 - a. Ensure the N setting is at 100% and the ON/OFF functionality next to the N is set to OFF
 - b. These dip switches are intended for specialized single phase applications and do not apply to the Load Master series under normal operation
2. Retry turning on the circuit after adjustments are made

3. If a large inductive load such as an air conditioner was turned on when the circuit breaker tripped, raise inrush settings or increase the trip time delay
 - a. The inrush settings can be adjusted by turning on the dip switches for I3.
 - b. All dip switches up will result in the maximum inrush tolerance of ten times the circuit breaker rating

Circuit Breaker Tripping When Powering Up

1. Follow the steps outlined for circuit breakers tripping during normal operation
2. If the issue persists, disconnect the output connections from the circuit breaker that is tripping
3. Turn on all circuit breakers
 - a. If the circuit breaker trips, contact Lex Products for technical assistance
 - b. If the circuit breaker does not trip proceed to the next step

Circuit Breaker Tripping When Powering Up (continued)

4. Connect the cable to the corresponding circuit breaker outlets and turn off all attached loads
5. Turn on the circuit breaker
 - a. If the circuit breaker trips, disconnect cabling used and check for short circuits
 - b. Turn off all circuit breakers, check the cabling connected to the Outdoor PowerRACK, and check connected loads for shorts circuits

How to Check an Outdoor Rack for Short Circuits

1. Disconnect incoming power from the Outdoor Rack
2. Turn on circuit breaker(s) for the circuit(s) to be tested
3. Using a continuity meter or a multimeter, set to continuity/resistance mode and connect one probe to the input ground (green) Cam-type connector brass
4. Take the other probe of the meter and check if there is continuity between each Cam-type connector and ground
5. If there is continuity ($R < 1 \text{ k}\Omega$, or the meter lights up or beeps), there is short circuit present
 - a. Contact Lex Products Technical Services department
6. If there is no continuity, repeat step 3 and 4 checking if there is continuity between the neutral (white) Cam-type connector and the other Cam-type connectors
7. If continuity is detected, there is a short circuit present
 - a. Contact Lex Products if a short circuit is detected

No Power at Receptacles

1. Ensure that connections are in place and tight
2. Ensure that power source is live
 - a. Activate if not on
3. Ensure that circuit breakers are 'I/ON'
4. If a circuit breaker trips, identify source of short circuit or overload and correct before resetting circuit breaker
 - a. Check to see if the circuit is overloaded and reduce loads as needed
 - b. Check for short circuits in the cabling or load device and correct as needed
5. For those receptacles that include a GFCIs:
 - a. Ensure the GFCIs are set by pressing the 'RESET' button
6. If a GFCI trips, identify source of current leakage and correct before resetting the GFCI
 - a. Check to see if the circuit is overloaded and reduce loads as needed
 - b. Check for short circuits in the cabling or load device and correct as needed
7. If there is still no power at receptacles:
 - a. Remove PDU from use
 - b. Contact Lex Products for next course of action

TECHNICAL SUPPORT

Lex Products is available to help answer any installation or operation inquiries. For any questions or technical advice, please call Technical Services 24 hours per day, 7 days per week at 800.643.4460 or email INFO@lexproducts.com.

Notes:

Lex Products
11 Forest Parkway
Shelton, CT 06484
203.363.3738
203.363.3742 Fax

Lex South
15751 SW 41
Street
Davie, FL 33331
954.888.1024
954.888.1026 Fax

Lex West
12701 Van Nuys
Blvd.
Suite Q
Pacoima, CA
91331
818.768.4474
818.768.4040 Fax

www.lexproducts.com
info@lexproducts.com
800.643.4460

© Copyright Lex Products 2025

Produced in the United States of
America
05-30 All Rights Reserved.

Lex Products logo and
lexproducts.com are trademarks
or registered trademarks of Lex
Products in the United States,
other countries, or both.