

ADJUSTABLE CIRCUIT BREAKERS

All Outdoor PowerRACKs that are in the Load Master® product family, have adjustable breakers for the Cam outputs. The current level of the circuit breakers is adjustable to match the load of the output receptacles. The circuit breakers are adjusted with dip switches located under a clear cover on each circuit breaker.

Figure 3.1: Circuit Breaker (breaker may vary in design)

Function Breakdown of LS/I Breakers

The Ekip Dip LS/I is an electronic trip unit used in ABB's XT series molded case circuit breakers (MCCBs). It provides adjustable protection functions using DIP switches. The LS/I version includes:

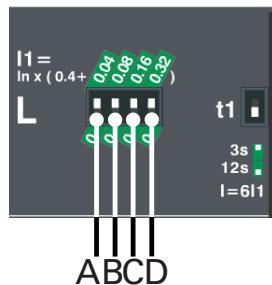
L (Long-time protection): Protects against overloads. Providing 16 amperage settings.

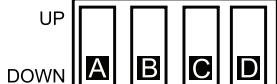
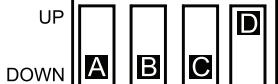
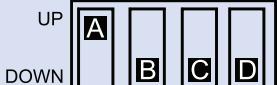
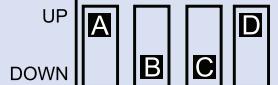
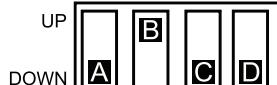
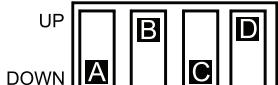
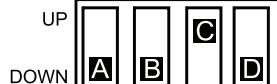
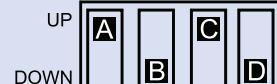
S (Short-time protection): Protects against short-circuits with adjustable delay for selectivity.

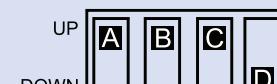
I (Instantaneous protection): Trips immediately on very high fault currents.

In Ekip Dip LS/I trip units, the Short-time (S) and Instantaneous (I) protections share a combined control logic, but they are not the same function. The LS/I indicates that the S and I protections are internally coordinated.

Function Breakdown of LS/I Breakers

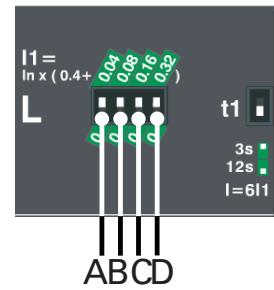

Figure 3.2: DIP Switches


Adjusting the Circuit Breakers

640-1600 Amp Circuit Breaker- DIP Switch Settings

1. Set the DIP switches on the circuit breaker to the closest level indicated in the table below with the set level greater than the actual load
 - a. Only adjust the DIP switch labeled "L"
 - b. To adjust the circuit breaker, open the clear cover over the DIP switch using a small flathead screw driver
 - c. Move each switch (A, B, C, D) into the up or down position based on the table below to achieve the desired output current rating
 - d. Close the clear cover over the DIP switch


640-1600 Amp Circuit Breaker Adjustment Settings

Amps	Dipswitch Configuration	Amps	Dipswitch Configuration
640 Amps	UP DOWN	1,152 Amps	UP DOWN
704 Amps	UP DOWN	1,216 Amps	UP DOWN
768 Amps	UP DOWN	1,280 Amps	UP DOWN
832 Amps	UP DOWN	1,344 Amps	UP DOWN
896 Amps	UP DOWN	1,408 Amps	UP DOWN
960 Amps	UP DOWN	1,472 Amps	UP DOWN
1,024 Amps	UP DOWN	1,536 Amps	UP DOWN
1,088 Amps	UP DOWN	1600 Amps	UP DOWN

Adjusting the Circuit Breakers (continued)

480-1200 Amp Circuit Breaker- DIP Switch Settings

1. Set the DIP switches on the circuit breaker to the closest level indicated in the table below with the set level greater than the actual load

- a. Only adjust the DIP switch labeled "L"
- b. To adjust the circuit breaker, open the clear cover over the DIP switch using a small flathead screw driver
- c. Move each switch (A, B, C, D) into the up or down position based on the table below to achieve the desired output current rating
- d. Close the clear cover over the DIP switch

480-1200 Amp Circuit Breaker Adjustment Settings

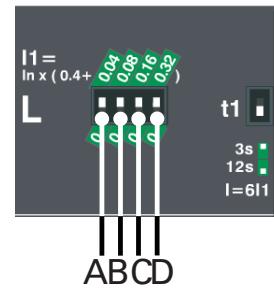
Amps	Dipswitch Configuration	Amps	Dipswitch Configuration
480 Amps	UP DOWN	864 Amps	UP DOWN
528 Amps	UP DOWN	912 Amps	UP DOWN
576 Amps	UP DOWN	960 Amps	UP DOWN
624 Amps	UP DOWN	1,008 Amps	UP DOWN
672 Amps	UP DOWN	1,056 Amps	UP DOWN
720 Amps	UP DOWN	1,104 Amps	UP DOWN
768 Amps	UP DOWN	1,152 Amps	UP DOWN
816 Amps	UP DOWN	1,200 Amps	UP DOWN

Adjusting the Circuit Breakers (continued)

240-600 Amp Circuit Breaker- DIP Switch Settings

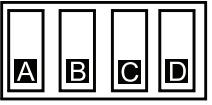
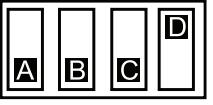
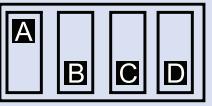
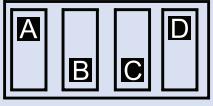
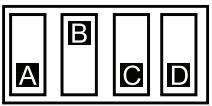
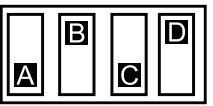
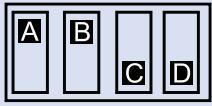
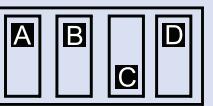
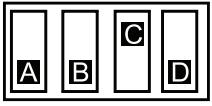
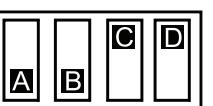
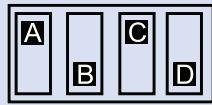
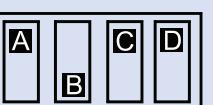
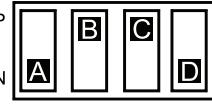
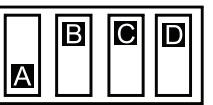
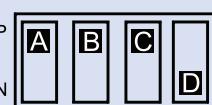
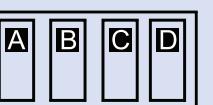
1. Set the DIP switches on the circuit breaker to the closest level indicated in the table below with the set level greater than the actual load

- a. Only adjust the DIP switch labeled "L"
- b. To adjust the circuit breaker, open the clear cover over the DIP switch using a small flathead screw driver
- c. Move each switch (A, B, C, D) into the up or down position based on the table below to achieve the desired output current rating
- d. Close the clear cover over the DIP switch


240-600 Amp Circuit Breaker Adjustment Settings

Amps	Dipswitch Configuration	Amps	Dipswitch Configuration
240 Amps	UP DOWN 	432 Amps	UP DOWN
264 Amps	UP DOWN 	456 Amps	UP DOWN
288 Amps	UP DOWN 	480 Amps	UP DOWN
312 Amps	UP DOWN 	504 Amps	UP DOWN
336 Amps	UP DOWN 	528 Amps	UP DOWN
360 Amps	UP DOWN 	552 Amps	UP DOWN
384 Amps	UP DOWN 	576 Amps	UP DOWN
408 Amps	UP DOWN 	600 Amps	UP DOWN

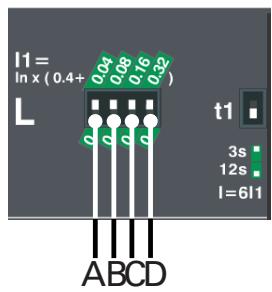
Adjusting the Circuit Breakers (continued)

















160-400 Amp Circuit Breaker- DIP Switch Settings

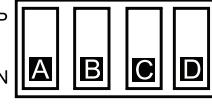
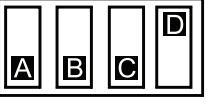
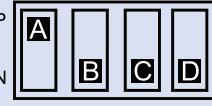
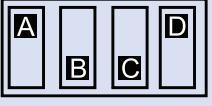
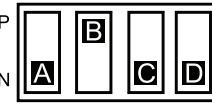
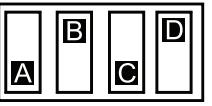
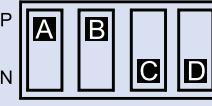
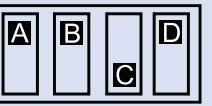
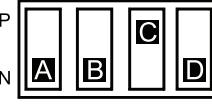
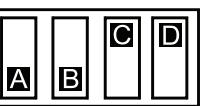
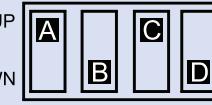
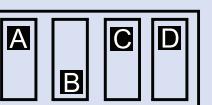
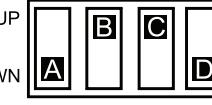
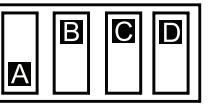
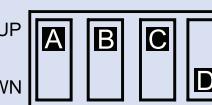
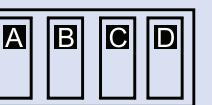
1. Set the DIP switches on the circuit breaker to the closest level indicated in the table below with the set level greater than the actual load

- a. Only adjust the DIP switch labeled "L"
- b. To adjust the circuit breaker, open the clear cover over the DIP switch using a small flathead screw driver
- c. Move each switch (A, B, C, D) into the up or down position based on the table below to achieve the desired output current rating
- d. Close the clear cover over the DIP switch

160-400 Amp Circuit Breaker Adjustment Settings

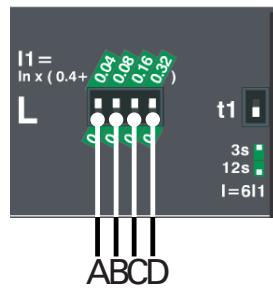

Amps	Dipswitch Configuration	Amps	Dipswitch Configuration
160 Amps	UP DOWN	288 Amps	UP DOWN
176 Amps	UP DOWN	304 Amps	UP DOWN
192 Amps	UP DOWN	320 Amps	UP DOWN
208 Amps	UP DOWN	336 Amps	UP DOWN
224 Amps	UP DOWN	352 Amps	UP DOWN
240 Amps	UP DOWN	368 Amps	UP DOWN
256 Amps	UP DOWN	384 Amps	UP DOWN
272 Amps	UP DOWN	400 Amps	UP DOWN

Adjusting the Circuit Breakers (continued)

















100-250 Amp Circuit Breaker- DIP Switch Settings

1. Set the DIP switches on the circuit breaker to the closest level indicated in the table below with the set level greater than the actual load

- a. Only adjust the DIP switch labeled "L"
- b. To adjust the circuit breaker, open the clear cover over the DIP switch using a small flathead screw driver
- c. Move each switch (A, B, C, D) into the up or down position based on the table below to achieve the desired output current rating
- d. Close the clear cover over the DIP switch


100-250 Amp Circuit Breaker Adjustment Settings

Amps	Dipswitch Configuration	Amps	Dipswitch Configuration
100 Amps	UP DOWN	180 Amps	UP DOWN
110 Amps	UP DOWN	190 Amps	UP DOWN
120 Amps	UP DOWN	200 Amps	UP DOWN
130 Amps	UP DOWN	210 Amps	UP DOWN
140 Amps	UP DOWN	220 Amps	UP DOWN
150 Amps	UP DOWN	230 Amps	UP DOWN
160 Amps	UP DOWN	240 Amps	UP DOWN
170 Amps	UP DOWN	250 Amps	UP DOWN

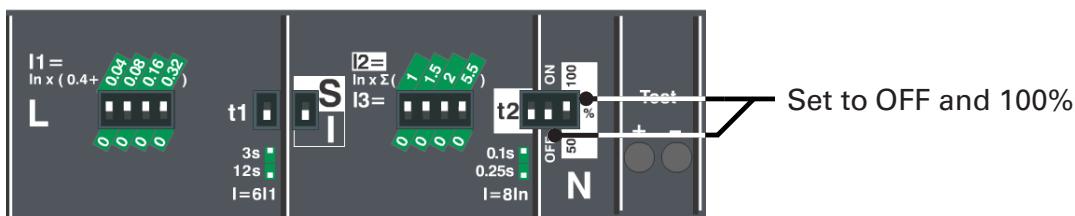
Adjusting the Circuit Breakers (continued)

60-150 Amp Circuit Breaker- DIP Switch Settings

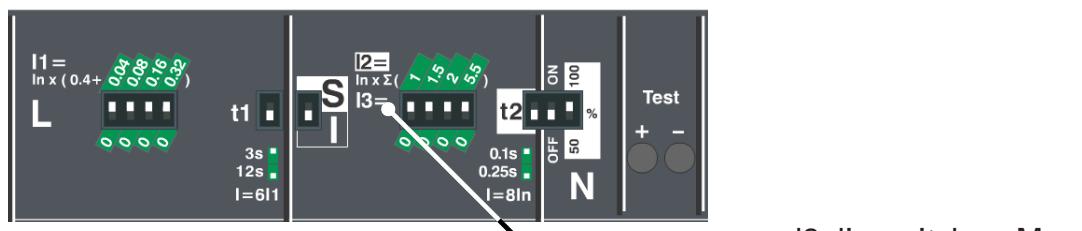
1. Set the DIP switches on the circuit breaker to the closest level indicated in the table below with the set level greater than the actual load

- a. Only adjust the DIP switch labeled "L"
- b. To adjust the circuit breaker, open the clear cover over the DIP switch using a small flathead screw driver
- c. Move each switch (A, B, C, D) into the up or down position based on the table below to achieve the desired output current rating
- d. Close the clear cover over the DIP switch

60-150 Amp Circuit Breaker Adjustment Settings


Amps	Dipswitch Configuration	Amps	Dipswitch Configuration
60 Amps	UP DOWN	108 Amps	UP DOWN
66 Amps	UP DOWN	114 Amps	UP DOWN
72 Amps	UP DOWN	120 Amps	UP DOWN
78 Amps	UP DOWN	126 Amps	UP DOWN
84 Amps	UP DOWN	132 Amps	UP DOWN
90 Amps	UP DOWN	138 Amps	UP DOWN
86 Amps	UP DOWN	144 Amps	UP DOWN
102 Amps	UP DOWN	150 Amps	UP DOWN

TROUBLESHOOTING GUIDE


To help determine what has caused a circuit breaker to trip, it is important to configure the simplest possible power distribution system set-up under which the problem still occurs. The loads connected to the system might exceed the circuit breaker rating, in which case a larger power distribution unit would be needed. If a larger power distribution unit is needed, contact Lex Products with the load information and requirements of the specific application to determine the appropriate power distribution system.

Circuit Breaker Tripping During Normal Operation

1. Verify whether circuit breaker long delay settings are set as needed
 - a. Ensure the N setting is at 100% and the ON/OFF functionality next to the N is set to OFF
 - b. These dip switches are intended for specialized single phase applications and do not apply to the Load Master series under normal operation
2. Retry turning on the circuit after adjustments are made

3. If a large inductive load such as an air conditioner was turned on when the circuit breaker tripped, raise inrush settings or increase the trip time delay
 - a. The inrush settings can be adjusted by turning on the dip switches for I3.
 - b. All dip switches up will result in the maximum inrush tolerance of ten times the circuit breaker rating

Circuit Breaker Tripping When Powering Up

1. Follow the steps outlined for circuit breakers tripping during normal operation
2. If the issue persists, disconnect the output connections from the circuit breaker that is tripping
3. Turn on all circuit breakers
 - a. If the circuit breaker trips, contact Lex Products for technical assistance
 - b. If the circuit breaker does not trip proceed to the next step

Circuit Breaker Tripping When Powering Up (continued)

4. Connect the cable to the corresponding circuit breaker outlets and turn off all attached loads
5. Turn on the circuit breaker
 - a. If the circuit breaker trips, disconnect cabling used and check for short circuits
 - b. Turn off all circuit breakers, check the cabling connected to the Outdoor PowerRACK, and check connected loads for shorts circuits

How to Check an Outdoor Rack for Short Circuits

1. Disconnect incoming power from the Outdoor Rack
2. Turn on circuit breaker(s) for the circuit(s) to be tested
3. Using a continuity meter or a multimeter, set to continuity/resistance mode and connect one probe to the input ground (green) Cam-type connector brass
4. Take the other probe of the meter and check if there is continuity between each Cam-type connector and ground
5. If there is continuity ($R < 1 \text{ k}\Omega$, or the meter lights up or beeps), there is short circuit present
 - a. Contact Lex Products Technical Services department
6. If there is no continuity, repeat step 3 and 4 checking if there is continuity between the neutral (white) Cam-type connector and the other Cam-type connectors
7. If continuity is detected, there is a short circuit present
 - a. Contact Lex Products if a short circuit is detected

No Power at Receptacles

1. Ensure that connections are in place and tight
2. Ensure that power source is live
 - a. Activate if not on
3. Ensure that circuit breakers are 'I/ON'
4. If a circuit breaker trips, identify source of short circuit or overload and correct before resetting circuit breaker
 - a. Check to see if the circuit is overloaded and reduce loads as needed
 - b. Check for short circuits in the cabling or load device and correct as needed
5. For those receptacles that include a GFCIs:
 - a. Ensure the GFCIs are set by pressing the 'RESET' button
6. If a GFCI trips, identify source of current leakage and correct before resetting the GFCI
 - a. Check to see if the circuit is overloaded and reduce loads as needed
 - b. Check for short circuits in the cabling or load device and correct as needed
7. If there is still no power at receptacles:
 - a. Remove PDU from use
 - b. Contact Lex Products for next course of action